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Abstract 

The geometrical properties of a flat tangent space-time local to the generalized manifold 

of the Einstein-Schroedinger non-symmetric theory, with an internal n-dimensional space 

with the SW(n) symmetry group is developed here. As an application of the theory, it 

is then obtained a generalized Dirac equation where the electromagnetic and the Yang- 

Mills fields are included in a more complex field equation. When the 2-dimensional case is 

considered, the theory can be immediately interpreted through the algebra of quatemions, 

which, through the Hurwitz theorem, presupposes a generalization of the theory using the 

algebra of octonions. 
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I. Introduction 

A geometrical treatment of a gauge theory built to describe particles in the presence of 

gravitation, electromagnetism and Yang-Mills fields has been developed by some authors 

since Einstein’s attempt to unify gravitation and electromagnetism in his (complex) non- 

symmetric theory, the so called Einstein-Schroedinger (ES) [l] theory. The Bonnor-Moffat- 

Boal (BMB) [2] theory was successful in obtaining a correct limit to the Einstein-Maxwell 

theory, and the Borchsenius [3] theory used the same principle to include the Yang-Mills 

field. Even though these theories have been criticized [4] and the “physical limit” has not 

been convincing, they are attractive from the point of view of a geometrical treatment of 

gravitation plus gauge theory. Also, they permit the extension to an octonionic theory, 

through a theorem of Hurwitz [5,6]. However, given the present status of actual unified 

theories, the use of such a theory is not yet clear, but at a minimum, it constitutes an 

attempt in making useful some mathematical tools such as algebra and symmetry properties 

in a (geometrical) unified theory on the curved space-time. 

The main goal of the present work is to obtain the Dirsc equation for a spin-l/2 particle 

placed locally to a curved space-time and in the presence of gravitation, electromagnetism 

and Yang-Mills fields, using the ES non-symmetrical theory (see ref.[ll]). To achieve this 

it is necessary to introduce an n-dimensional internal space to the (complex) space-time 

manifold of the ES theory’. As we are interested in working with Yang-Mills fields we use 

here the internal space of the n x n matrices, with SU( n as the internal symmetry group, ) 

as in the Borchsenius theory [3]. Every object in this internal space can be expanded in 

terms of nr linearly independent matrices, {rs, ri,i = 1,2, . . . . (ns - l)}, where ro G l,,, and 

r i = ri. The line element is defined on this extended manifold as: t 

ds’ = ~Tr(G,,dz’dz’) , 

where, 

G,v = (G;: dz)) , a,b = l,...,n w 

is a matrix in the internal space such that, 

‘The notation used in this work is about the same as used in refi. [6] and [ll]. 
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with gW being the metric of the ES non-symmetric theory. It is also imposed that: 

where the Hermitian conjugation operates on the internal matrix indices. There exists an 

inverse Gfi” such that: 

G,G’.“‘= G""G,,=6"1 OL (1.5) 

where the order of factors is important and where Eqs. (1.3) and (1.4) were used. The metric 

G yy can be written as : 

G, = q,.tzaTo + q,,tiTi , i=l,Z ,..., (“‘-1) , (1.6) 

where, following conditions (1.3) and (1.4), qPo is the metric on the manifold of the ES or 

the BMB theory, which includes the electromagnetism through the Maxwell tensor FW: 

qw=gLw=gE++Fr; (1.7) 

and qwi should be of the Yang-Mills type: 

1 iepa 
%wi=~ h -fy I 

where E is the elementary isotopic charge when n = 2. The constant p is defined such 

that in the limit p -+ 0, the field equations and the geometrical properties of the Eisntein- 

Maxwell-Yang-Mills theory are obtained (see refs. [2] and [3]). It s v al ue is given as p = -$, 

IpI = 3.8 x lo-=cnz, (c = G = 1). 

The properties of covariant derivatives on the manifold for the ES non-symmetrical man- 

ifold, state that the space-time connection is such that 

Cl’,, = CP,, = We + iiT:‘,. . 
” (1.9) 

To obtain the field equations through a minimal action principle, we have also to define the 

Schroedinger connection: 

Bpw = Ww - %A, , 
iP’ 

(1.10) 

where A, is the electromagnetic vectot potential and can be written in terms of the vector- 

torsion Cl’, as: 
” 

A, = -$ip)VT . (1.11) 
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Taking an internal vector $P = G’(z), a = l...n, the internal covariant derivative is given 

by: 

lqlM = v,, + rJAadJb 1 (1.12) 

where r,, is the internal connection. r,, is taken here to be of the Yang-Mills form: 

rp = -;&~ . 

The internal curvature is then obtained through the difference: 

v~l/Ly - qyp = P,“bllrb 7 (1.14) 

where P+, is the internal curvature, given by: 

pry = rlr,” - rv+ - [r,, r,] . (1.15) 

An object K = (ICab) with two internal matrix indices transforms then, as: 

K’ = UtKU = UKlJt , (1.16) 

where, since the symmetry group is W(n), the transformation matrices U are unimodular 

matrices: Ut = UT’ = U-‘, detU = 1. 

A total covariant derivative of a space-time vector V“(z) can be obtained through the 

parallel transport of this vector on the extended space as: 

vi,(z) = vya + w,vp + [r,, vy . (1.17) 

A “total curvature” is then obtained through the difference: 

V@,+“$ - V’, ap = FvA,,VA - V”P,, - 2vQ-l$ ++ 
, (1.18) 

where V*(z) can be wirtten in terms of internal components as: 

V”(z) = t$(Z)Tg + VjyZ)Ti , i,= 1,2,3 . 

The total curvature R’ xpD gives the mixture of the space-time and internal curvatures: 

FL@ APP = (r’;w + r~vprl;,) - PA,,, + rpv:,r”,,) 
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with 

= R”A,, + 6f;Pap . 

rPvP = ~P,,T, + qr, . 

(1.19) 

To obtain the field equations for the extended theory, we use the Palatini variational 

method. The action is: 

A= IX’+ , J 
where the Lagrangian L: is taken as: 

.c = TT(G’“R, + &gGGcl > (1.20) 

where R, = R+‘,, by (1.19), and, 

Gw=wG”“, 

w = [-+(detG,,)]t 

The field equations obtained on this extended manifold are then ‘: 

(1.21) 

g;r;; = s;y, - p-y’ p - wee,, + we& - [r,, CY] = 0 , (1.22) 

8.” 
B” ,a=0 , (1.23) 

*R,w(~) = 0 , (1.24) - 

‘R&) +’ R&I) +’ R&B) = 0. (1.25) 

Equation (1.25) is a consequence of the fact that: 

‘Rr;(@ = g-L” - %,,) + rv+ - rlr,” + [r,, r,i . 

In the above equations the argument 0 in R,,JO), means that the expression for the gener- 

alized R.icci tensor is written in terms of the Schroedinger connection. Also, in (1.25) and 

(1.26), we have: 

l Rw(@) = %A’4 + L , (1.27) 

‘In Eq. (1.22) the notation used for the covadant derivative of 8” is the usual when it is given in terms 
of the Schroedinger connection tip,,,. 
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where 

1, = -1(G,G~G,, + $,,G,,G~ + G,,.) , 
(ZP)’ 

We proceed now to the next section where the properties of a tangent space on this 

extended manifold will be presented. 

II. The n-dimensional complex tangent space 

A local tangent space can be defined on this extended space-time manifold through a gener- 

alized correspondence principle [7]. It is also supposed that this tangent space has attached 

to it the same n-dimensional internal space. 

Define n x n matrix vierbeins E;(z) such that: 

G, = Et,OE;m , (2.1) 

Then, according to the correspondence principle [8] g eneralized to this case, the line element 

can be written in both spaces as: 

ds” = ~Tr(G,,dz”dz’) = ~~r(tl~a&t’&‘) , (2.2) 

dx” = E;d+’ dxt” = Et,d&’ 

where, aiming toward a physical interpretation, the metric on the tangent space is taken 

with the structure of the Minkowski metric 7.b . 

As there exists an inverse Gw such that (1.5) is true, we must have: 

G’“’ = Et$T,‘q”* , (2.3) 

From this, we obtain the corresponding orthogonslity relations for the matrix vierbeins: 

E;Et: = E,‘Et,” = S;ro , 

Et,“E,’ = Et,‘E: = byro ~. (3.4) 

The vierbeins can be developed through the internal basis, for example taking E;(z), as: 

E; = k$,(z)n + k$(i(+)Ti , 
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and, 

Et; = k*;Jz)ra + k;(z)Ti , (2.5) 

t since 7i = 7;. 

The transformation law for vectors on the tangent space is defined as usual through 

the Lorentzian rotation matrices, Lab, such that LTqL = 7. Therefore, a more general 

transformation law for the matrix tangent vectors E;(z) shall be now: 

E:“(z) = L’=b(z)(U(n)E;(z)Vt(n)) . 

We can define now, onthis matrix tangent space, the operation of covariant differentia- 

tion, for example, on the vector E = (Ei): 

E& = E& + R;“E,P - A,‘,E: + [I?,, E,“] . 

It is important to remember that the space-time connection, “wPy, may include an (internal) 

complex connection related to the electromagnetic potential-vector A,, through the relations 

(1.9) and (1.10). Using the notation of ref. [6], it will be called here C, which, by (l.lO), is 

given by: 

C, = -?-A, = -;A” . 
ip 

Therefore, the expressions corresponding to the field equation GCri, = 0 (and its inverse 
I.” 

G+T 
lb 

= 0), for the matrix vierbeins, are as follows: 

Gr.. = o +-I- - hia = (E;,)t = o , (2.8) 

EZ. 
+I- = E;,, - E;r”, + A;.E; = 6 , 

rpw = oprp~o + 6;r, , r, = -!&.F= -rl , 
A a PC = (A:, + 6:C& + s:r, ; 
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&’ = 0 H Et& zz (+t = 0 , (2.9) 

Eii.. = E;I+ + E,‘d’, - AtpcIIE: = 0 , 

rtpp = P,,T, - 6;l-a , because B”* = P,, , 

ayb = (ApOb - 6;c,JTo , because C, = -;A- = -C: . 

From (2.8) and (2.9) we can obtain a new expression for Ay in terms of the matrix vierbeins, 

A 7ab = E;Ek7 + E;r”,Et,P , 

= E;Etbf7 + E;r,Ek (2.10) 

A;, = -E&Et: + E;F’,,-rEk , 

= -E;. Et: + ET Et’ 
+;-I P w-f b . 

The tangent space-time connection A, can be then written in this theory as: 

(2.11) 

A;b = Re{+[E;Eq7 + E;r,Et:]} , (2.12) 

or 

A Pb = Re{;Tr[-E>,Ek + E;r,Eb]} . (2.13) 

The expression that relates the curvatures in the curved and the tangent spaces is now: 

E;Rplycr - S,,,“,E; = 0 , (2.14) 

where FL’- is the total curvature (1.19), written with, the “connections” I?,, and S, is 

the total curvature on the tangent space written with the “connections” A”, 

S ..,“. = (A,, - 4, - IL, hrl)“, , 

= is,“, + C(G,, - c~,“)lro + Jy, I (2.15) 

where S, is the curvature written with the tangent connection A”, and P, is the internal 

curvature written for the internal connection 7”. Also, the quantity (Cv,, - C,,,) corresponds 
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to the curvature of an internal (complex) space. It is here related to the electromagnetic 

tensor F,. 

III. The generalization of the Fock-Ivanenko coeffi- 

cients. 

We can obtain a new generalized set of Dirac equations when we extend the treatment from 

the curved space-time of General Relativity to this generalized matrix one. The anticommu- 

tation relations for the Dirac constant r-matrices [9] are: 

{%,7b} = hb14 , 

{7”,rb) = wb14 , 

Multiplying (3.1) by EF and Eb, and using (2.1), we obtain: 

TP{~,,+,} = 2Tr(G,)l4 = 2ng,Jd , 

where the 2% is taken on the n-dimensional matrix internal space, and where: 

(3.1) 

(3.2) 

(3.3) 

E;r. = re ; &a = i; , (3.4) 

In (3.3), g,,,, is the metric of the ES-non-symmetric theory, by (1.3). 

Analogously, multiplying (3.2) by Et, and Eby and taking the Tr over the internal n- 

dimensional matrices, we obtain: 

TT{+‘,~“) = 2Tr(G”“)l4 = 2ng’“14 , (3.5) 

where, 

Et7” = 7’ ; Ett7” ~4’ . (3.6) 

and (2.3) was used. Considering the non-Riemannian manifold of the ES-Theory, the total 

covariant derivative of the new 7,, is given by: 

7*. = 7J4.Y + lb - Q”,w7, + Pvvr,l + [rv,-/,l , (3.7) 
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where A, is the internal connection corresponding to the space of the generalized r-matrices 

(or also, the Dirac wave functions space). Taking then (3.4) and (2.8), we have that: 

7p = (EF7a)iY = (“fiv ha = 0 9 (3-g) 

since 7. is a constant matrix. In the same way, we obtain: 

?,i. = (Et,“7a)i, = (Et$)7.z = II . 

Expanding (3.8) and (3.9) we arrive at: 

7p = 7)l.u - opw7, + Cv7, + [Au 7,1+ [r,, 7,1 = 0 , 

7+iv = rply - epvp+p - Gi; + [Li;l + [rv9i;l = 0 . 
Therefore, we can obtain an expression for A,: 

A Y zz AAaba 4i Y d 

(3.9) 

(3.10) 

(3.11) 

were A, is given in (2.12) or (2.13). This equation is similar to the corresponding one in 

General Relativity [lo]. 

We can use then a Minimal Action Principle to obtain field equations for spin a l/2 

particle of mass m, where the wave function is 4(z), pl aced in a non-Kemannian manifold 

of the ES Theory, and also under the influence of an (n-dimensional) Yang-Mills field. The 

Action for this situation is: 

A= &d’r 
I 

(3.13) 

where the Lagrangian is given by: 

~JZ = J-w{~7;rr[~,+Ar+C,+r,]11,+~[~,+Ar- C,-I?,]$+'-&} , (3.14) 

where /L is the mass term, and the TT is taken on the internal n-dimensional space. The 

function $(z) is a complex object that locally transforms under the representation of Lorentz 

Group (V(L)), but also transforms under the (internal) SU(R) group. The field equations 

obtained are: 

7’[& + A,, + cp + r,]4 - p$ = 0 , (3.15) 
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and 

-~[~,+A,-c,-r,]~‘-r~=o , (3.16) 

where again, q(z) = $ t (z)7o. Also, we can find an expression for the “charge conjugate” 

wave function, $J’, which is: 

+y& + A, - c, - r,w - ,u$’ = 0 , (3.17) 

where 4’ = CqT’, and C is the charge conjugation matrix. 

IV. Inclusion of Internal Mass Terms 

We are going to analyse now the case of an extended mass-term where we suppose there is 

non-zero mass on the internal space, i.e., we will suppose that for each internal axis we have 

a different mass term. 

The n’dimensional vierbein E:(r) can be written as in (2.5): 

E:(Z) = K~(z),,To + kf(+)iTi , i = 1, .*.>n’ - 1 . 

Suppose that the mass term p is a matrix-like term: 

P = ILO~O + Piri . 

We also are going to assume here that: 

(4.1) 

(4.2) 

k:, = k:,, + ik:,, , (4-3) 

PO = POR + +0r , (4.4) 

and that k~i and pi are pure imaginary numbers. These hypotheses are consistent with the 

form of the metric defined in (1.6) and (1.7), and with the definition of the matrix-vierbeins 

in (2.5). 

Define 

‘Co, =Pw, , Pox = PXmo , (4.5) 

and 

kfi = ipAnt , p; =ipXmi , (4.6) 
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where now p is being considered a parameter, and X is a constant with the value of the l/p, 

as in ref. [ll]: 

X - e = 2 58 x 103zcm-’ , 
25 . 

where the maximal value for IpI was taken, IpI = * = 3.8 x 10-31cm, in the normalization 

used in ref. [3]. 

Placing the above quantities in the Dirac equation (2.29), we can expand it as: 

KtmY’vlr~ - /~oi&o + ip,W7”v,lj, - m&o 

+ ipX[n~;7~V,11) - mj~]~i = 0 ) (4.7) 

where, V, = 8, $ A,, + C, + l’,,. In the limit of the parameter p + 0, we should get the 

standard Dirac equation in the presence of gravitation, electromagnetism and Yang-Mills 

fields. Consequently, we can get nr other sets of Dirac equations when we take ng,, = n$ - 

hz, and ms = mi = pan, for each i, and where hf and pan are taken as the vierbeins and 

the mass term in the General Relativity theory. 

Therefore, the above analysis results in some sort of “projections” of the Dirac equation 

on the internal space, which are due to the definition of more general vierbeins through 

(2.1). The value of the parameter p will determine then, the amplitude of those projections 

through (4.5) and (4.6). 

V. Conclusion 

Taking the complex manifold of the ES non-symmetrical theory, and adding to it an nr- 

dimensional internal space, it is possible to develop a generalized theory that, in the case 

chosen here where we used the SU( rz s ) y mmetry group, permitted us to include the SU(n) 

Yang-Mills field. It is also possible to obtain the tangent space local to that extended 

manifold. Then, the corresponding generalized Dirac theory as well as the generalized Dirac 

field equation were developed. In the case of an extended mass-term where we assume there 

is non-zero mass on each internal axis, and defining the internal components of the vierbeins 

as well as the internal components of the mass term, as being proportional to the parameter 

p, we obtained n’ other sets of Dirac equations which are some sort of projections of the 

standard Dirac equation on the internal space. The value of the parameter p determines in 
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this theory, the amplitude of these projections through (4.5) and (4.6). In the limit of the 

parameter p -+ 0, the standard situation of the General Relativity theory is obtained. 

A question arises at this point: where would a theory like this be consistent with the real 

world? We could just say that this should happen in regions of the space-time with high 

intensity fields (gravitation, electromagnetism or Yang-Mills fields), and at distances of the 

order of the Planck length, where it would be reasonable to think of a non-zero p and the 

consequences of a more complex theory such as the one used in this work. 

The present theory can be easily interpreted through a quaternionic theory in the case of 

n = 2. This will enable us to extend it to an octonionic theory, which would be convenient 

in this case, since we are using a complex non-symmetrical manifold. This is permitted 

by the theorem of Hurwitz. Thinking from this point of view, the gauge on the Dirac 

equation in a real manifold would just be one corresponding to the gravitational gauge. 

The electromagnetic gauge on the Dirac equation would be included when we consider the 

space-time manifold extended to a complex-manifold. The Yang-Mills gauge would then 

be included when we extend the manifold to the matrix-manifold, which is equivalent to 

the quaternionic manifold for the SU(2) symmetry group. The next step would then be 

to extend the quaternionic theory to the octonionic one and determine to which gauge it 

corresponds. This is the goal proposed in the third part for the analysis of the Dirac equation 

in a non-Riemannian manifold. 
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